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A B S T R A C T   

Mild cognitive impairment (MCI) is the early stage of Alzheimer’s disease, which is associated with abnormal 
brain proteins, the recognition of MCI being a challenging task. Recent studies have shown that the performance 
of MCI identification can be improved by combining protein features captured in Positron Emission Computed 
Tomography(PET). Nevertheless, there are still great challenges in extracting effective features from the vast 
amount of information. Most brain networks only considered the unilateral features of nodes or edges, ignored 
the interactions between them. In response to this problem, our study proposed to combine the quadruple Sia-
mese network and GCN with self-attention pooling(QS-SAGCN) for MCI identification. In detail, we constructed 
the multiple protein features network(MPN) and higher-order MPN(MPHN) by PET images to promote the MCI 
identification. Furthermore, a pooling operation with self-attention mechanism was incorporated into GCN 
(SAGCN), which considered the node characteristics and topology in the graph network to facilitate the acqui-
sition of robust biomarkers, simultaneously. Additionally we combined quadruple Siamese network with SAGCN 
as classification framework to improve the identification accuracy. Our proposed MCI identification method was 
evaluated on 230 subjects (including 117 MCI subjects, 113 normal control subjects) with both 18F-AV-1451 PET 
and 18F-AV-45 PET data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Experimental 
results showed that 1) QS-SAGCN enhanced the ability of feature identification, laying the foundation for 
obtaining more effective biomarkers for MCI patients; 2) The MCI identification accuracy (93.5%) was obtained 
by combining QS-SAGCN and higher-order network, indicating that the framework had advantages in mental 
disorders recognition. Finally, through comparison, the accuracy of our proposed MCI recognition method was 
superior to some of the existing state-of-the-art methods. Overall, the MCI identification method in this study was 
effective and promising to assist in the diagnosis of MCI in future clinical practice.   

1. Introduction 

Alzheimer’s disease (AD) is considered as a cognitive dysfunction 
and neurodegenerative disease(de Mendonça & Ferrari, 2023). The 
clinical symptoms of AD patients are thinking confusion, language dis-
order and loss of cognitive function. Mild cognitive impairment(MCI) is 
a brain dysfunction caused by neurodegeneration (death or loss of nerve 
cells in the brain). It is also a transitional state between normal aging 
and AD, which has special biomarkers about abnormal brain proteins 
precipitation(Kantarci et al., 2021). Early diagnosis and treatment of 

MCI patients would take care of great help to the prevention of AD. Aβ 
protein and Tau protein are important observed proteins in MCI, and the 
interaction of these two proteins causes damage to nerve cells and leads 
to impairment of brain function(Massa et al., 2022). Although both Aβ 
and Tau are important disease-related factors, the etiological basis and 
neural substrate remain incompletely understood. It is necessary to mine 
the relationship between the two proteins for MCI diagnostic analysis(Li 
et al., 2019), deep learning algorithms provided a good tool. Positron 
Emission Computed Tomography(PET) images has played an important 
role in the diagnosis of different mental disorders, it could track protein 
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precipitation of the brain. So how to combine deep learning algorithms 
with PET image features for diagnosing of MCI was our focus in this 
study. 

PET is an advanced clinical imaging technology in nuclear medicine. 
The general method of PET is to inject glucose, protein, nucleic acid, 
fatty acid, labeled short-lived radionuclide and other substances into the 
human body to detect the metabolic activity and protein precipitation of 
human (Dani et al., 2016). 18F-AV-1451 PET (Tau-PET), a novel PHF- 
Tau tracer, is demonstrated to detect tangle pathology in recent years, 
and it provides a new method to measure Tau neuronal tangles in the 
brain by vivo neuroimaging. Meanwhile 18F-AV-45 PET could also 
catch the Aβ protein(Chandra et al., 2019). Lian et al. constructed the 
individual metabolic network of FDG-PET and contributed to the pre-
diction of AD from the horizontal and vertical perspectives respectively 
(Lian et al., 2018). Duan constructed the Aβ protein network, analyzed 
the pathological significance of the Aβ protein network, and calculated 
individual network properties as features to assist in the diagnosis of 
diseases(Duan et al., 2017). It is still unknown whether the abnormal 
topological structure in the protein network can help the early diagnosis 
of disease. 

With the development of deep learning algorithms(Song et al., 2022, 
Wee et al., 2019), more and more researchers utilized these data-driven 
methods to identify potential neuroimaging biomarkers for computer- 
aided diagnosis of brain diseases. Neuroscience has always faced the 
situation of high feature similarity and small sample size. Optimizing the 
pooling layer is a concern in the feature extraction stage. The Siamese 
network could also help solve feature similarity and small sample sce-
narios(Bai et al., 2020). Graph convolutional network (GCN) is able to 
mine useful brain network patterns in disease classification by explicitly 
capturing network topology information(Jiang et al., 2020, Ktena et al., 
2018). Specifically, GCN has the ability to transmit, aggregate and up-
date the node information in the graph. It could catch the relationship of 
the nodes in graph to enhance its characteristics, so as to obtain the 
nodes information and topology of graph network for disease classifi-
cation(Di Martino et al., 2014). However, the existing GCN based brain 
connectivity network analysis methods have at least two disadvantages. 

GCN may not work well for high-dimensional small samples. In order 
to avoid overfitting, training GCN often requires a large number of 
training samples, which is difficult to meet in medical image 
research. Some studies have tried to combine data from different 
sites for experiments(Kam et al., 2019), but the data parameters of 
multiple sites are different, which may affect the performance of 
GCN. 
GCN mainly aims at the information of nodes in brain network, but 
little is known about the whole network topology. Therefore, the 
network topology is often ignored during the GCN operation, lacking 
of effective pooling operations. 

In view of the above problems, we proposed the quadruple Siamese 
network and GCN with self-attention pooling(QS-SAGCN) model based 
on PET individual higher-order brain connectivity network for identi-
fication of MCI patients. First we constructed a multiple protein features 
network for each individual using a sparse linear regression and calcu-
lated the higher-order (second/third-level) brain networks, which was 
drew on the idea of other reference(Yang et al., 2020). In this way, 
higher-order networks could reveal higher level and more complex 
interaction relationships than traditional networks. Then, the self- 
attention in GCN could take into account node features and network 
topology, which contributed to graph pooling operations and also 
filtered out useless information, leaving more discriminative node fea-
tures. Finally, we developed a quadruple Siamese network GCN model to 
learn the feature representation of brain connectivity networks, and 
explicitly incorporated quadruple relationships between subjects into 
the learning process. 

The remainder of this paper is organized as follows. In the Related 

Work section, we presented relevant research about deep learning, GCN 
and Siamese network. In the third section, we mainly introduced the 
detailed description of our method, including network construction, 
pooling operation improved by self-attention and the QS-SAGCN 
framework. In Section IV, we presented experimental results, explored 
different feature evaluation methods and compared with other methods. 
In Section V, we discussed the impact of several key components in the 
proposed method. 

2. Related work 

2.1. Deep learning for brain disorder identification 

With the development of neuroimaging and artificial intelligence 
technology, many deep learning algorithms have been proposed to 
explore the abnormalities of human brain connectome and distinguish 
patients from healthy subjects(De & Chowdhury, 2021, Behrad & Aba-
deh, 2022). Researchers showed the progress of artificial intelligence 
and the emergence of deep learning technology provide a promising 
method for better interpretation of brain image data. Deep learning al-
gorithm has become the most advanced technology for analyzing fMRI 
data sets, improving performance in various fMRI applications(Shao 
et al., 2021). Kam et al(Kam et al., 2019) proposed a novel CNN 
framework that learned embedded features of whole-brain functional 
connectivity, which could be used for MCI diagnosis, simultaneously. 
This framework provided intuitive method for better personalized 
diagnosis of various neurological diseases by taking full advantage of the 
deep embedded diagnostic features using rs-fMRI. Zhang et al(Zhang 
et al., 2021b) exploited a FDG-PET cognitive feature based on deep 
learning, which was applicable to the recognition of Parkinson’s disease 
and Alzheimer’s disease. In this framework, the feature maps of the deep 
CNN model were used to visualize the cognitive dysfunction-related 
regions, which could provide quantitative biomarkers of cognitive 
dysfunction in various neurodegenerative diseases. However, the exist-
ing deep learning frameworks often ignored the deep-seated topological 
information of the brain network, which may cause the sub-optimal 
performance in brain disorder identification. 

2.2. Graph convolutional network for brain connectivity analysis 

In recent years, research on extending deep learning methods to 
graph data has received increasing attention. Graphs were widely used 
as computational model to capture interactions between individual el-
ements represented as nodes in the graph(Yue et al., 2020). Network 
embedding is a method of transforming nodes into lower dimensional 
representations while maximally preserving the network structure(Li 
et al., 2022b). Embedding brain networks into meaningful low- 
dimensional representations could improve classification performance 
for disease diagnosis. GCN have been proposed as an effective embed-
ding model in several researches[18; 19](Zeng et al., 2019), which 
naturally combine structural information and node features in the 
learning process. Structural or functional connections of the human 
brain network represent the information interaction patterns between 
different regions, and these connections could serve as graph architec-
tures representing the whole-brain scale of each subject. In the field of 
graph learning, the topological properties of brain network could better 
describe the structural or functional characteristics. Recent studies have 
shown that GCN is more effective than other methods in learning rep-
resentations(Ma et al., 2019). Parisot et al(Parisot et al., 2018) used the 
GCN method to classify Autism spectrum disorder. Combining imaging 
and non-imaging data in a single framework, they achieved significant 
improvements in classification accuracy through precise graph struc-
ture. Song et al.(Song et al., 2022) introduced a classification framework 
combining GCN and machine learning. They used a dual-modal fusion 
brain connectivity network of resting-state fMRI and diffusion tensor 
imaging to identify significant memory concern and MCI. Moreover, 
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some studies learned network representations through Siamese graph 
convolutions, and the final category of test subject is determined ac-
cording to the similarity between test subject and known subject. Ktena 
et al(Ktena et al., 2018) applied the Siamese GCN in autism classifica-
tion, using two GCNs with weight-shared to measure the difference 
between pairwise functional networks. What the attention needs is that 
the existing GCN can not be directly used for our task. Specifically, (1) 
GCN generally requires a high sample size, while our sample is limited; 
(2) The traditional pooling method has high spatial complexity. In view 
of the above problems, we give corresponding solutions in the proposed 
methods. 

2.3. The application of Siamese networks in the diagnosis of mental 
diseases. 

Siamese networks have outstanding performance in solving the 
problem of feature similarity. Reihaneh et al proposed a novel approach, 
which was a deep Siamese-based 3D CNN. The trained model could use 
paired networks as input to accurately distinguish subjects, and it could 
be extended to situations that are not visible(Hassanzadeh and Calhoun, 
2020). Ma et al built the end-to-end graph similarity learning framework 
named Siamese GCN for fMRI analysis. This method learned brain 
network representations via a supervised metric-based approach with 
Siamese neural networks using two graph convolutional networks as the 
Siamese networks. The experiment used a supervised metric based 
pattern for learning brain network representations, where the Siamese 
network owned two GCNs as dual networks.(Ma et al., 2019). Yang et al 
improved the Siamese network architecture equipped with a graph 
convolutional encoder to learn about graph (or topic) level embedding, 
which preserved application dependent similarity metrics between brain 
networks. This algorithm increased the number of training samples and 
introduced the flexibility of incorporating additional prior information 
through a specified target graph level distance(Li & Mateos, 2022). 

3. Materials and method 

3.1. Subjects and image Pre-Processing 

All the PET data we used in this paper are from ADNI (Alzheimer’s 
Disease Neuroimaging Initiative: http://www.loni.ucla.edu/ADNI/) 
Database. The ADNI database collects data from 50 sites around the 
world to help researchers use these data for scientific research. In the 
ADNI database, the progression of AD is studied by assessing the state of 
change in brain function and structure. 

In this research we selected 230 subjects, including those with MCI 
and normal controls (NC). MCI patients had reported the subjective 
memory concern. However, no significant level of impairment was 
present in other cognitive domains; essentially, their activities of daily 
living were preserved and no signs of dementia existed. Table 1 lists the 
demographic data of all subjects. 

All PET image data in this study were collected in the resting state. 
The following steps were mainly used to process PET images: (1) PET 
images were registered and averaged; (2) The images were normalized, 
and then smoothed to produce a uniform resolution; (3) We registered 

the images into a unified MNI(Montreal Institute of Neurology) 
template. 

In the subsequent network construction, we will use the 246 tem-
plate (Brainnetome Atlas)(Fan et al., 2016) to divide brain regions. In 
addition, linear regression is utilized before formal calculations to 
eliminate the effects of gender and age level on the measurements. 

3.2. Proposed methods 

In order to make the algorithm more consistent with the purpose and 
data of this study, we proposed a feature extraction framework of GCN 
based on self-attention pooling mechanism(SAGCN). Further, we drew 
the framework from the Siamese network idea to construct QS-SAGCN. 
The overall research idea consists of the following: 

Multiple protein features network(MPN): Since only considering the 
pairwise correlation between brain regions may ignore the potential 
impact of other regions. This study used sparse linear regression to 
quantify the cross-region relationships of protein features, and 
considered the aforementioned regional features as regression target 
and prediction vector. Besides, existing research has mainly focused 
on modeling low-order relationships between nodes in brain net-
works(Yin et al., 2022), lacking the exploration of the underlying 
higher-order associations that exist in the network itself. Further-
more, higher-order networks based on MPN is considered to describe 
the state of information exchange between brain regions. Higher- 
order MPN(MPHN): For overcoming the obstacles of dimensionality 
and making up for the limited amount of data, we calculated MPHN 
on the basis of MPN. In MPN, each vertex corresponds to multiple 
pairs of brain regions, and each edge represents how several pairs of 
brain regions interact. In this way, MPHN can reveal higher levels 
and more complex interactions than MPN, and enrich the amount of 
data. 
SAGCN: Attention mechanisms have been widely used in deep 
learning research. This mechanism can be applied to GCN for paying 
more attention to important nodes and less attention to unimportant 
nodes in MCI patient. In this study, the self-attention mechanism 
algorithm was applied to the GCN framework to form SAGCN, 
obtaining discriminative features. 
QSN:In addition, this study will refer to the concept of Siamese 
network in order to improving the recognition rate under the con-
dition of small sample size. Based on the traditional Siamese 
network, the quadruple Siamese network(QSN) model collocating 
SAGCN was built by using the image idea to enhance the robustness 
of the classification method, called QS-SAGCN. 

The computational environment of this experiment were conducted 
on a PC with a 3.7 GHz Intel Core CPU, an NVIDIA GeForce RTX 3080 Ti 
graphics card, 32 GB DDR4 RAM, and a 1 TB solid-state disk drive. The 
proposed method is realized using MATLAB R2018a and Python 3.6. The 
deep learning frameworks are TensorFlowGPU 1.8 and Keras 2.2. 

3.2.1. The brain network construction 
In this study, we aimed to improve the accuracy of MCI autodiag-

nosis by using two kinds of PET images, and discovered potential neural 
mechanisms by constructing the network based on multiple protein 
features. 

We used the linear regression model with ℓ1 − norm penalty to 
construct a network based on multiple protein features, which was 
called the the least absolute shrinkage and selection operator (LASSO) 
(Zheng et al., 2018). LASSO algorithm could automatically filtered out 
the regression quantity that was not closely related to the prediction 
target(Ryali et al., 2012), so it could more accurately describe the nature 
of the brain connection pattern(Sporns et al., 2004). 

For network construction, we defined each subject as X =

Table 1 
Demographic and clinical characteristics of subjects.   

MCI NC p 

N (total N = 230) 117 113 – 
Age 72.37 ± 5.21 75.67 ± 6.22 0.3451b 

Genger (male:female) 64:53 60:53 0.383a 

FAQ 3.4 ± 2.9 0.1 ± 0.6 <0.001a 

MMSE 26.1 ± 2.3 27.8 ± 1.6 <0.001a 

CDR 0.5 0 <0.001a 

Data are presented as a mean ± standard deviations. p was obtained using athe two- 
sample t test and bthe chi-square test. 

Y. Li et al.                                                                                                                                                                                                                                        

http://www.loni.ucla.edu/ADNI/)


Expert Systems With Applications 230 (2023) 120575

4

[x1, x2, x3, ...xq]
T
∈ Rl×q, where q was the number of brain regions, and 

xq was a sequence composed of p protein features of the q-th brain re-
gion. Before constructing the network, we normalized the regional value 
using the whole brain average and the standard deviation of each pro-
tein feature. Specifically, the linear regression model was defined as y =

Aw, where w represented the regression coefficient and y represented 
the target vector. In the j-th regression, data matrix was A = [x1,x2,xj− 1,

xj+1, ...xq], and q-1 brain regions as independent variables could linearly 
express y, as shown in formula (1). 

min
w
||y − Aw||2F + λ||w||1 (1) 

Specifically, λ represented the sparsity control parameter. We con-
structed MPN with the varying λ ∈ 10-4,a × 10-3,b × 10-2a,b ∈ 1,2, 
…,9and calculated the classification performance of different λ in MPN. 
Meanwhile, the coefficient that was not 0 in the regression coefficient 
matrix was replaced with 1, and then a binary matrix was obtained. 
0 and 1 respectively represented the coefficients of similarity between 
the target brain region and other brain regions. Fig. 1 showed a MPN 
containing three types protein(Tau protein content, Aβ protein content, 
and Tau protein and Aβ protein content ratio for each region). The 
regression coefficient of each row in the matrix indicated the brain re-
gion represented by this row was linearly expressed through other brain 
regions. The coefficient 1 indicated that the brain region represented by 
this row is highly similar to the target brain region, while the coefficient 
0 indicated that the similarity was low. Because each line of the MPN 
solution process was independent, the resulting MPN was an asymmetric 
network. Notably, asymmetric networks may only represented the 
similarity between brain proteins and cannot reflect other information 
such as transmission mechanism. 

Inspired by previous research, we utilized Pearson coefficient to 
build a higher-order network(MPHN) on basis of the MPN. Then 
calculated the higher-order coefficients between multiple regions to 
represent the information interaction of brain regions, as shown in 
Fig. 1. On one hand, using this method can make up for the shortcomings 
of limited data, and more effective features could be extracted through 
brain networks of different scales; on the other hand, using high-order 
brain networks could explore more additional information about the 
brain. Significantly different from lower-level networks, each vertex of 
higher-order networks corresponded to a pair (or even multiple pairs) of 

brain regions, and each edge characterizes how pairs of brain regions 
interacted. The MPHN is as follows: 

C(l)
ij (k) = corr(x(l)i (k), x(l)j (k)) (2) 

In addition, we also used the method in formula (2) to calculate the 
third-level higher-order network on the basis of MPHN(H+), which is 
defined as MPHN(H++). 

3.2.2. Graph convolutional network 
The strength of deep learning model lies in their ability to auto-

matically discover latent or abstract information from high-dimensional 
neuroimaging data, which could be an important step toward under-
standing complex mental disorders. GCN owned many advantages in 
processing non-Euclidean spatial data in form of the graph data(He 
et al., 2018). GCN automatically extracted the features of brain network 
in an end-to-end manner for recognition(Ghorbani et al., 2022). GCN 
enhanced node features by transmitting and updating node information 
in the graph, and utilized the obtained node information to mine useful 
brain connection network patterns for disease classification(Jiang et al., 
2020). Capable of capturing network topology, GCN have been proven 
to own advantages in learning network representations tailored to 
identify specific brain diseases(Grattarola et al., 2021). 

The classical GCN could be thought of as a Laplacian smoothing 
operator for node features on a graph structure. GCN is consisted by a 
series of convolutional layers, and each layer in the architecture is fol-
lowed by the Rectified Linear Unit (ReLU) activation function to in-
crease nonlinearity(Ghorbani et al., 2022). In the application of image 
data, in order to reduce complexity of the model, it was often necessary 
to replace the feature resolution with the spatial resolution. To achieve 
this, statistics were computed in local neighborhoods using pooling 
layers(Roy et al., 2019). The specific details are shown in formula (Jiang 
et al., 2020). 

E(l+1) = Relu(Pool(D̃
1/2

ÂD̃
1/2

E(l)W(l))) (3) 

Formally, A ∈ Rn×n was an adjacency matrix, which defines whether 
there was a connection between two nodes.D̃ii =

∑
j Âij. W was a train-

able weight matrix; E(l+1) is the feature matrix (i.e. features computed 
after l steps of the GCN, and node embeddings E(l) generated from pre-
vious feature transfer steps). After L iterations of training, a complete 

Fig. 1. Construction of multi-level protein features network.  
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GCN could be obtained, as shown in Fig. 2. 
In traditional GCN, feature extraction could be carried out through 

the relationship between nodes and edges. However, in order to make 
GCN more in line with the characteristics of data, the following im-
provements will be made in this study. The traditional pooling method 
simply considered the topological form of the graph, and the spatial 
resolution was high. Therefore, attention mechanism was considered to 
be added to the GCN to reduce the learned parameters and enhance the 
effectiveness of features. In addition, in order to obtain higher classifi-
cation accuracy in limited data, this study utilized GCN to extract data 
features, and added feature similarity measurement mechanism to 
improve the accuracy of data recognition. 

3.2.3. Self-attention pooling of GCN 
For the purpose of better reflecting the hierarchical structure of input 

data, pooling layer effectively reduced the number of parameters and 
improved computational efficiency. Self-attention pooling could use 
features and topology to produce hierarchical representations with 
reasonable temporal and spatial complexity. The GCN based on self- 
attention mechanism(SAGCN) was proposed in this study. The 
network frame is shown in Fig. 3. The update formula of node charac-
teristic matrix and adjacency matrix is as formula (4): 

Z = σ(D̃1/2
ÃD̃

1/2
XΘatt) (4) 

Where Θatt ∈ RF×1 was the only parameter in the Self-attention 
Pooling layer. Since the Self-attention score was obtained by the 
convolution of the graph combining A and X in formula (4), the pooling 
result could reflect the characteristics and topological structure of the 
graph. 

The following operations were required to update the adjacency 
matrix and node characteristics by using the pooling layer. According to 
the importance score and topology of the nodes, the pooling operation 
could be performed, and some less important nodes could be discarded 
to form a new graph structure. As shown in formula (5), where KN meant 

to select the proportion of nodes to keep according to the attention score 
value and i indicated an index operation. 

i = top rank(attention score,KN) (5)  

3.2.4. The modified Siamese network in classification 
In this section, Siamese network was incorporated into the classifi-

cation framework, and the original Siamese network performs classifi-
cation by measuring how similar two inputs were. Through the 
calculation of Loss, the similarity of the two inputs was evaluated(Roy 
et al., 2019). However, the original Siamese network framework only 
simulated the pairwise relationship of the samples, ignoring its potential 
complex (such as quadruple) associations. In this work, we adopted a 
quadruple learning framework in order to mine the quadruple similarity 
between subjects. New graph embedding based on SAGCN learning was 
used to measure the similarity between subjects. The quadruple Siamese 
network(QSN) contained four identical networks (with common pa-
rameters), and a bridge was built between them by constructing a loss 
function. 

Specifically, as could be seen from Fig. 4, the T-th QSN input was {Xt
p,

Xt
a1,Xt

n} and {Xt
p,Xt

a2,Xt
n}, where Xt

p and Xt
n were positive and negative 

samples, and Xt
a1 and Xt

a2 were anchor point sample 1 and anchor point 
sample 2 respectively. Where X represented the brain map of the subject, 
which contained a set of features F and an adjacency matrix A. That was, 
positive sample and anchor sample 1 belong to the same category. The 
negative sample and anchor sample 2 belong to the same categories. In 
this work, based on the graph representations they learned, each QSN 
encouraged samples belonging to the same class to be similar, and 
representations from different classes encouraged to be different. 

min
w

λ
2
||w||2 +

∑N

i=1
max[0, (d+ + α − d− )] (6)  

d+ = |ft(Xt
p) − ft(Xt

ai)|, (i = 1or2) (7) 

Fig.2. Overall frame diagram of GCN. Where xi represented the feature vector of the node, xi
’ represented the feature vector of the new node obtained after the graph 

convolution. In the pooling operation, the red fork sign indicated that the pooling operation can discard some less important nodes. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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d− = |ft(Xt
ai) − ft(Xt

n)|, (i = 1or2) (8) 

Where f(•) represented the convolution process of SAGCN. In the 
process of calculating different d, the same set of SAGCN parameters 
were used. The loss function was shown in formula (6), where α was a 
super parameter used to distinguish whether the T-th identification was 
valid. In the process of parameter debugging, when referring to the 
positive anchor point, make d+ as small as possible and d- as large as 

possible. Similarly, the negative anchor point was taken as the reverse. 

4. Experiment analysis 

4.1. The most distinguishing features in MCI diagnosis 

To further analyze whether the network construction method pro-
posed in this study has physiological significance. We put interest in the 

Fig. 3. Pooling operation. After node selection, the dotted lines in the graph connect the node with low attention scores, and then remove it to get a new graph.  

Fig. 4. The quadruple Siamese network.  
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third-level higher-order network(MPHN(H++)) properties with the 
higher final accuracy. Our network construction method mainly based 
on the interactive relationship between different brain regions. There-
fore, in this section, we focused on the connections between brain re-
gions at the MPHN(H++). The final results were shown in Table 2 and 
Fig. 5. 

We found that all different connections were concentrated in the 
Temporal lobe, Frontal lobe, Amygdala and Parahippocampal gyrus. 
These regions mainly colocalized with DMN. It has sufficient evidence 
that the changes of brain structure, function and cognition in MCI pa-
tients are related to the abnormalities in brain functional subnetworks. 
Previous studies indicate that Aβ protein aggregation may be driven by 
the total flow of neuronal activity(Zhang et al., 2021a). Tau protein 
aggregation may be driven by cross neuronal diffusion, generating a 
neurodegenerative pattern consistent with a specific functional network 
and ultimately leading to a specific clinical phenotype(Ismail et al., 
2020). These conclusions are consistent with our findings. Meanwhile, 
the pathological changes regions of MCI patients were mainly concen-
trated in above regions(as shown in Table 2), which indicated that our 
results are robust. 

4.2. Comparison for MCI diagnosis using different feature extraction 

In order to verify effectiveness of the proposed method, we con-
ducted extensive experimental comparison based on the following six 
networks. The classification performance of above six networks were 
listed in Table 3 and Fig. 6. We compared the classification effects of 
different types of networks from the classification accuracy(ACC), 
sensitivity(SEN), specificity(SPE), and area under the curve(AUC). 

Among them, the MPN represented the original regression network, 
and MPHN(H+) represented the second-level higher-order network of 
MPN, where MPHN(H+)-GCN represented the combination of the con-
structed MPHN(H+) and GCN network architecture. Similarly, 
MPHN(H++) represented the third-level higher-order network of MPN, 
where MPHN(H++)-GCN represented the combination of the constructed 
MPHN(H++) and GCN network architecture. SAGCN + MPHN(H+) and 
SAGCN + MPHN(H++) represented the combination of the different 
constructed MPHN and GCN network architecture with with self- 
attention pooling operation, and other representations were similar. 

Three conclusions could be drawn from Table 3: (1) adopting 
MPHN(H+) features is superior to MPHN(H++) features, which indicated 
that higher-order brain network can obtain more discriminative features 
by describing more comprehensive information transmission of brain 

regions; (2) The GCN with self-attention mechanism for pool operation 
can take into account the node characteristics and network topology, 
and extract more discrimination features; (3) For MPHN(H+) and 
MPHN(H++), the performance of feature extraction and feature layer 
fusion based on SAGCN was the best, which proved the effectiveness of 
feature fusion. 

4.3. Comparison of the different types of Siamese networks 

We compared the effect of three different Siamese Networks on the 
performance of SAGCN classifier. The previous experimental results 
showed that the third-level higher-order network(MPHN(H++)) was the 
brain network with the best discrimination performance, so the analysis 
in this section was only carried out on the basis of MPHN(H++). The 
original Siamese networks was used to deal with the case where two 
inputs are “relatively similar”(Hoffer & Ailon, 2015). The experiment 
data were applied to the original Siamese Networks composed of the 
same scale network, to compare the performance difference between 
QSN and the original Siamese network. In addition, to further verify the 
performance of the QSN, we added the triplet Siamese network for 
comparison(Zhu et al., 2019), which consisted of three instances of the 
same feed-forward network (with shared parameters). When inputting 
three samples, the network outputted two intermediate values, namely 
the distance between the embedding representation of two inputs and 
the representation (anchor) of the third input. 

4.4. Comparisons with state-of-the-art methods 

In order to demonstrate the advantages of the MCI classification 
method proposed in this study, we compared the existing state-of-the-art 
methods. Zhang et al proposed a new method for data feature repre-
sentation combined with multi-view information enhancement, in 
which an improved multi-task feature selection method was used to 
select the optimal image features for MCI classification. Finally, using 
the multi-kernel SVM classification method, the classification accuracy 
of 88.5% was obtained(Liu et al., 2020). Ashtari-Majlan et al bulit a 
multi-stream deep convolutional neural network to fed with features- 
based imaging data to classify MCI patients. The experimental results 
on the ADNI dataset showed an accuracy of 85.96%(Ashtari-Majlan 
et al., 2022). Li et al constructed a new adaptive dynamic functional 
connectivity model, supplemented by a deep spatiotemporal feature 
fusion method, for the recognition of mild cognitive impairment (MCI). 
The experimental results showed that an accuracy of 87.7% is achieved 
(Li et al., 2020). Therefore, it could be seen that our proposed MCI 
classification method is significantly superior to three existing state-of- 
the-art methods. 

5. Discussion 

5.1. The effectiveness of network construction method 

In this study, multiple regression model(MPN) was employed to 
construct the original brain network, taking into account the influence 
of all brain regions. MCI was accompanied by abnormalities that 
affected multiple brain regions (i.e. large-scale networks) rather than a 
single isolated region(Du et al., 2007, Stam et al., 2007). Previous study 
has shown that Aβ protein and Tau protein well reflect the pathological 
changes(Firouzian et al., 2018). Besides, Tau protein and Aβ protein 
played an important role in the development of MCI. The atrophy of 
cerebral cortex and brain function damage of MCI patients were closely 
related to both proteins, the distribution of these two proteins might 
have some certain correlations(Da et al., 2014). Therefore, this study 
attempted to regard the ratio in each brain region of two proteins as the 
new feature(Santangelo et al., 2020). 

Furthermore, researchers found that higher-order method was 
generally more sensitive to subtle changes in signals than low-order 

Table 2 
Brain regions with significant group effect in the connections between brain 
regions for MCI patients and HC.  

Region 1 Region 2 P value Region 1 Region 2 P value 

SFG_L_7_1 Hipp_L_2_2  0.00003 SFG_R_7_6 Hipp_L_2_2  0.0072 
SFG_L_7_1 Hipp_R_2_2  0.00006 SFG_R_7_6 Hipp_R_2_2  0.0059 
SFG_R_7_1 Hipp_L_2_2  0.0001 LOcC_R_2_2 MFG_L_7_1  0.0050 
SFG_R_7_1 Hipp_R_2_2  0.00006 LOcC_R_2_2 MFG_R_7_1  0.0043 
SFG_L_7_2 Hipp_L_2_2  0.0012 LOcC_R_2_2 MFG_L_7_2  0.0030 
SFG_L_7_2 Hipp_R_2_2  0.0013 BG_R_6_5 ITG_L_7_6  0.0003 
PoG_L_4_3 FuG_L_3_2  0.0030 BG_R_6_5 ITG_R_7_6  0.0109 
PoG_L_4_3 FuG_R_3_2  0.0118 SFG_L_7_1 PhG_L_6_3  0.0042 
INS_L_6_2 ITG_R_7_6  0.0107 SFG_L_7_1 PhG_R_6_3  0.0042 
CG_R_7_2 FuG_L_3_2  0.0308 Tha_R_8_7 MTG_L_4_1  0.0055 
CG_R_7_2 FuG_R_3_2  0.0130 Tha_R_8_7 MTG_R_4_1  0.0299 
LOcC_L_4_3 MFG_R_7_1  0.0072 BG_R_6_6 IPL_L_6_6  0.0037 
LOcC_L_4_3 MFG_L_7_2  0.0074 BG_R_6_6 IPL_R_6_6  0.0005 

Abbreviations: SFG: Superior Frontal Gyrus; PoG: Postcentral Gyrus; INS: Insular 
Gyrus; CG: Cingulate Gyrus; LOcC: lateral Occipital Cortex; Hipp: Hippocampus; 
FuG: Fusiform Gyrus; ITG: Inferior Temporal Gyrus; MFG: Middle Frontal Gyrus; 
SFG: Middle Frontal Gyrus; BG: Basal Ganglia; Tha: Thalamus; ITG:Inferior 
Temporal Gyrus; PhG: Parahippocampal Gyrus; MTG:Middle Temporal Gyrus; 
IPL: Inferior Parietal Lobule; L: left; R: right. 
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method(Jung et al., 2017). In order to mine higher-order information 
among brain regions, we constructed the two type of higher-order net-
works. Results in Table 3 showed that the classification accuracy of the 

MPHN(H+) and the MPHN(H++) methods were 71.4% and 76.2% 
respectively. It could be seen that the higher-order network model 
improved the accuracy of disease classification because it considered the 
dynamic higher-order characteristics of brain network. Zhou et al 
defined higher-order brain networks among three brain regions. Results 
showed that such higher-order networks made full use of the comple-
mentary information in different brain networks and could obtain more 
discriminative network attributes(Zhou et al., 2018). Researches indi-
cated some higher-order statistics (e.g., correlation between different 
edges) may also provide additional and useful information for functional 
connectivity analysis(Fan et al., 2020, Feng et al., 2021). Therefore, in 
the study, the higher-order information between brain regions were 
embedded in the brain network and applied to identify MCI patients, 
which improved the recognition accuracy. In general, one brain region 
usually interacted with multiple brain regions physiologically, while 
low-order methods tended to ignore the relationship between multiple 
brain regions. It is necessary to study effective higher-order brain 
network construction methods to reveal the correlation of ordered pat-
terns among multiple brain regions from the perspective of protein 
networks. 

5.2. The effectiveness of Self-attention pooling 

In recent years, it has been proposed to extend convolutional neural 
network to graph data, including redefining convolution and graph 
pooling. Therefore, the application of pooling in graph significantly 
improved the effectiveness of feature extraction. Previous studies have 
adopted pooling methods that only consider graph topology(Rhee et al., 
2017). With the growing interest in graph pooling, several improved 
methods have been proposed(Zhang et al., 2018, Yao et al., 2021), 
which used the characteristics of nodes to obtain smaller graph repre-
sentation. In this study, a graph pooling method based on self-attention 
was applied GCN. The node characteristics and the graph topology could 
be fully considered to further improve the accuracy of classification. In 
previous study, by introducing a structured multi-head self-attention 
mechanism, a new architecture was developed to extract effective rep-
resentations of graph. Three forms of attention mechanisms were 
employed, namely node attention, layer attention, and graph attention 
(Gao and Ji, 2019). The self-attention pooling is the hierarchical pooling 
method, which considered node characteristics, graph topology and 
reduced computational complexity(Lee et al., 2019). Li et al. showed 

Fig. 5. Nodes with differences in MPHN(H++).  

Table 3 
MCI classification results with different feature strategies.   

ACC SEN SPE AUC 

MPHN(H+) 0.714 ±
0.012 

0.722 ±
0.024 

0.713 ±
0.024 

0.730 ±
0.032 

MPHN(H++) 0.762 ±
0.013 

0.783 ±
0.031 

0.755 ±
0.016 

0.780 ±
0.033 

MPHN(H+)-GCN 0.812 ±
0.031 

0.801 ±
0.021 

0.825 ±
0.026 

0.815 ±
0.021 

MPHN(H++)-GCN 0.865 ±
0.021 

0.854 ±
0.012 

0.844 ±
0.021 

0.847 ±
0.031 

MPHN(H+)-- 
SAGCN 

0.905 ±
0.013 

0.916 ±
0.023 

0.892 ±
0.043 

0.899 ±
0.033 

MPHN(H++)- 
SAGCN 

0.935 ±
0.022 

0.903 ±
0.025 

0.895 ±
0.032 

0.922 ±
0.021  

Fig. 6. ROC curve.  
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that the self-attention pooling could measure the importance of features 
in classification. Then the attention scores were used to weight features 
for highlighting the contribution of these discriminative features in 
classification model(Li et al., 2022a). The self-attention pooling mech-
anism achieved feature optimization and parameter reduction while 
extracting more accurate global features. The self-attention pooling al-
gorithm could adaptively extract key features that affected classification 
results, and considered the contribution of each feature to the final result 
(Ihalage and Hao, 2022). Moreover, Zhao(Zhao et al., 2022) proposed a 
self-attention coherent clustering electroencephalogram(EEG) emotion 
recognition model based on multi pool graph convolutional network in 
the research, and obtained good recognition results. 

5.3. The effectiveness of different types of Siamese networks 

We used the quadruple Siamese networks strategy with SAGCN to 
simulate the relationship between subjects, and verifying its effective-
ness in experiments. In this study, we compared the original Siamese 
Networks and triple Siamese Networks with the experimental model 
(QSN), and the results were shown in Table 4. In comparison, QSN was 
superior to the other networks in ACC and AUC values. This may be due 
to the higher-order relationship between subjects captured by multiple 
comparisons, which was helpful to discover the real data structure and 
improve the classification results. Furthermore, considering that the 
number of subjects in neuroimaging datasets were usually limited (such 
as tens or hundreds), multiple comparison combined with cross vali-
dation strategy could be used as a flexible data enhancement approach 
(Song et al., 2019). In previous studies(LaFerla & Oddo, 2005; Wang 
et al., 2018), improved models have been proposed by using the idea of 
Siamese Network, mainly by comparing the similarities between the 
identified samples and the reference samples. The results showed that 
these methods had strong generalization ability and superiority in the 
task of sample recognition. Moreover, the study proposed a framework 
based on Siamese networks to extract information features from the 
differences between the two hemispheres of brain. Using this method, 
the differences between dopaminergic regions in two hemispheres were 
found to be an effective biomarker for identifying Parkinson’s disease 
patients(Arco et al., 2022). Alaverdyan et al. employed the Siamese 
network composed of convolutional self autoencoders as subnetworks, 
and combined with features extracted from MRI images to identify 
subtle lesions in epileptic patients(Alaverdyan et al., 2020). 

6. Conclusion 

The proposed framework was consisted of the GCN combined with 
self-attention pooling(SAGCN) and collaborated with the quadruple Si-
amese network(QSN) for MCI classification, which achieved the best 
MCI classification accuracy (93.5%). Specifically, the third-level higher- 
order network(MPHN(H++)) of PET images could provided important 
information for the classification of MCI patients and NCs, and revealed 
cross-regional alterations in the protein content properties of each pa-
tient. Meanwhile, we combined SAGCN and QSN as QS-SAGCN into the 
classification model, which could utilize the topological structure of the 
MPHN(H++) to generate a feature representation with reasonable 
spatial complexity and classify diseases. The excellent classification 
performance achieved by the experimental framework in this study 
strongly demonstrated its effectiveness in identifying NC and MCI pa-
tients, and may have potential clinical applications in the automatic 
diagnosis of neuropsychiatric disorders. 

7. Limitation and Future work 

In order to further improve the current framework, the following 
limitations need to be considered. (1) The recognition of progressive 
MCI and stable MCI are not considered in the method. In future study, 
the classification of progressive MCI and stable MCI will be included in 

the method analysis, and the effectiveness of the method will be verified 
using the classification results of different types of MCI. (2) In the cur-
rent study, only a single model data is used, without considering the 
potential relationships between different modal data. Therefore, it is 
hoped that multimodal joint analysis can be included in future work. (3) 
Only one basic way is used to construct higher-order networks in this 
article. In future research, we can use the various ways to build different 
higher-order brain networks to help us better understand the patho-
physiological characteristics of brain diseases. (4) The amount of data in 
this study is limited, and data from different sites will be considered in 
the following research to further verify the effectiveness of the experi-
mental framework. 
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